
Package: dexter (via r-universe)
September 13, 2024

Type Package

Title Data Management and Analysis of Tests

Version 1.5.0

Maintainer Jesse Koops <jesse.koops@cito.nl>

Description A system for the management, assessment, and psychometric
analysis of data from educational and psychological tests.

License LGPL-3

URL https://dexter-psychometrics.github.io/dexter/

BugReports https://github.com/dexter-psychometrics/dexter/issues

Encoding UTF-8

LazyData yes

Depends R (>= 4.1)

Imports RSQLite (>= 2.2.7), DBI (>= 1.0.0), MASS (>= 7.3), tidyr (>=
1.2.0), rlang (>= 1.0.0), dplyr (>= 1.1.0), Rcpp (>= 1.0.1),
RcppArmadillo (>= 0.12.6.6.0), graphics, grDevices, methods,
utils

LinkingTo Rcpp, RcppArmadillo (>= 0.12.6.6.0), dqrng, BH, sitmo

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, latticeExtra, testthat, ggplot2, Cairo

VignetteBuilder knitr

Repository https://dexter-psychometrics.r-universe.dev

RemoteUrl https://github.com/dexter-psychometrics/dexter

RemoteRef HEAD

RemoteSha e93fc463328fc8e6dfecf6370bf201b5b5a6e66e

1

https://dexter-psychometrics.github.io/dexter/
https://github.com/dexter-psychometrics/dexter/issues

2 Contents

Contents
dexter-package . 3
ability . 4
add_booklet . 6
add_item_properties . 7
add_person_properties . 8
close_project . 9
coef.p2pass . 10
coef.prms . 10
design_info . 11
DIF . 12
distractor_plot . 13
fit_domains . 14
fit_enorm . 15
fit_inter . 17
get_booklets . 18
get_design . 18
get_items . 19
get_persons . 19
get_responses . 20
get_resp_data . 21
get_rules . 22
get_testscores . 23
get_variables . 23
individual_differences . 24
information . 25
keys_to_rules . 27
latent_cor . 27
open_project . 29
plausible_scores . 29
plausible_values . 31
plot.DIF_stats . 33
plot.p2pass . 34
plot.prms . 34
plot.rim . 35
probability_to_pass . 36
profile_plot . 37
profile_tables . 39
ratedData . 40
ratedDataProperties . 41
ratedDataRules . 41
read_oplm_par . 41
r_score_IM . 42
standards_3dc . 42
standards_db . 44
start_new_project . 45
start_new_project_from_oplm . 46

dexter-package 3

tia_tables . 47
touch_rules . 48
verbAggrData . 49
verbAggrProperties . 50
verbAggrRules . 50

Index 51

dexter-package Dexter: data analyses for educational and psychological tests.

Description

Dexter provides a comprehensive solution for managing and analyzing educational test data.

Details

The main features are:

• project databases providing a structure for storing data about persons, items, responses and
booklets.

• methods to assess data quality using Classical test theory and plots.
• CML calibration of the extended nominal response model and interaction model.

To learn more about dexter, start with the vignettes: ‘browseVignettes(package="dexter")‘

Dexter uses the following global options

• ‘dexter.use_tibble‘ return tibbles instead of data.frames, defaults to FALSE
• ‘dexter.progress‘ show progress bars, defaults to TRUE in interactive sessions
• ‘dexter.max_cores‘ set a maximum number of cores that dexter will use, defaults to the min-

imum of ‘Sys.getenv("OMP_THREAD_LIMIT")‘ and ‘getOption("Ncpus")‘, otherwise un-
limited.

Author(s)

Maintainer: Jesse Koops <jesse.koops@cito.nl>

Authors:

• Gunter Maris
• Timo Bechger
• Ivailo Partchev

See Also

Useful links:

• https://dexter-psychometrics.github.io/dexter/

• Report bugs at https://github.com/dexter-psychometrics/dexter/issues

https://dexter-psychometrics.github.io/dexter/
https://github.com/dexter-psychometrics/dexter/issues

4 ability

ability Estimate abilities

Description

Computes estimates of ability for persons or for booklet scores

Usage

ability(
dataSrc,
parms,
predicate = NULL,
method = c("MLE", "EAP", "WLE"),
prior = c("normal", "Jeffreys"),
parms_draw = "average",
mu = 0,
sigma = 4,
merge_within_persons = FALSE

)

ability_tables(
parms,
design = NULL,
method = c("MLE", "EAP", "WLE"),
prior = c("normal", "Jeffreys"),
parms_draw = "average",
mu = 0,
sigma = 4

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms object produced by fit_enorm or a data.frame with columns item_id, item_score
and, depending on parametrization, a column named either beta/delta, eta or b

predicate An optional expression to subset data, if NULL all data is used

method Maximum Likelihood (MLE), Expected A posteriori (EAP) or Weighted Like-
lihood (WLE)

prior If an EAP estimate is produced one can choose a normal prior or Jeffreys prior;
i.e., a prior proportional to the square root of test information.

parms_draw When parms is Bayesian, parms_draw can be the index of the posterior sample
of the item parameters that will be used for generating abilities. If parms_draw=’average’,
the posterior mean is used.

ability 5

mu Mean of the normal prior

sigma Standard deviation of the normal prior
merge_within_persons

for persons who were administered multiple booklets, whether to provide just
one ability value (TRUE) or one per booklet(FALSE)

design A data.frame with columns item_id and optionally booklet_id. If the column
booklet_id is not included, the score transformation table will be based on all
items found in the design. If design is NULL and parms is an enorm fit object
the score transformation table will be computed based on the test design that
was used to fit the items.

Details

MLE estimates of ability will produce -Inf and Inf estimates for the minimum (=0) and the maxi-
mum score on a booklet. If this is undesirable, we advise to use WLE. The WLE was proposed by
Warm (1989) to reduce bias in the MLE and is also known as the Warm estimator.

Value

ability a data.frame with columns: booklet_id, person_id, booklet_score, theta and optionally se
(standard error)

ability_tables a data.frame with columns: booklet_id, booklet_score, theta and optionally se (stan-
dard error)

References

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychome-
trika, 54(3), 427-450.

Examples

db = start_new_project(verbAggrRules, ":memory:")
add_booklet(db, verbAggrData, "agg")

f = fit_enorm(db)

mle = ability_tables(f, method="MLE")
eap = ability_tables(f, method="EAP", mu=0, sigma=1)
wle = ability_tables(f, method="WLE")

plot(wle$booklet_score, wle$theta, xlab="test-score", ylab="ability est.", pch=19)
points(mle$booklet_score, mle$theta, col="red", pch=19,)
points(eap$booklet_score, eap$theta, col="blue", pch=19)
legend("topleft", legend = c("WLE", "MLE", "EAP N(0,1)"),

col = c("black", "red", "blue"), bty = "n",pch = 19)

close_project(db)

6 add_booklet

add_booklet Add response data to a project

Description

Add item response data in long or wide format.

Usage

add_booklet(db, x, booklet_id, auto_add_unknown_rules = FALSE)

add_response_data(
db,
data,
design = NULL,
missing_value = "NA",
auto_add_unknown_rules = FALSE

)

Arguments

db a connection to a dexter database, i.e. the output of start_new_project or
open_project

x A data frame containing the responses and, optionally, person_properties. The
data.frame should have one row per respondent and the column names should
correspond to the item_id’s in the rules or the names of the person_properties.
See details.

booklet_id A (short) string identifying the test form (booklet)

auto_add_unknown_rules

If FALSE (the default), an error will be generated if one or more responses do
not appear in the scoring rules. If TRUE, unknown responses will be assumed
to have a score of 0 and will be added to your scoring rules

data response data in normalized (long) format. Must contain columns person_id,
booklet_id, item_id and response and optionally item_position (useful if
your data contains new booklets, see details)

design data.frame with columns booklet_id, item_id and optionally item_position spec-
ifying the design of any _new_ booklets in your data.

missing_value value to use for responses in missing rows in your data, see details

add_item_properties 7

Details

It is a common practice to keep response data in tables where each row contains the responses from
a single person. add_booklet is provided to input data in that form, one booklet at a time.

If the dataframe x contains a variable named person_id this variable will be used to identify unique
persons. It is assumed that a single person will only make a single booklet once, otherwise an error
will be generated.

If a person_id is not supplied, dexter will generate unique person_id’s for each row of data.

Any column whose name has an exact match in the scoring rules inputted with function start_new_project
will be treated as an item; any column whose name has an exact match in the person_properties will
be treated as a person property. If a name matches both a person_property and an item_id, the item
takes precedence. Columns other than items, person properties and person_id will be ignored.

add_response_data can be used to add data that is already normalized. This function takes a
data.frame in long format with columns person_id, booklet_id, item_id and response such as
can usually be found in databases for example. For booklets that are not already known in your
project, you need to specify the design via the design argument. Failure to do so will result in
an error. Responses to items that should be there according to the design but which do not have a
corresponding row in data will be added with missing_value used for the response. If this missing
value is not defined in your scoring rules and auto_add_unknown_rules is set to FALSE, this will
lead to an error message.

Note that responses are always treated as strings (in both functions), and NA values are transformed
to the string "NA".

Value

A list with information about the recent import.

Examples

db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="unknown"))

head(verbAggrData)
add_booklet(db, verbAggrData, "agg")

close_project(db)

add_item_properties Add item properties to a project

Description

Add, change or define item properties in a dexter project

Usage

add_item_properties(db, item_properties = NULL, default_values = NULL)

8 add_person_properties

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

item_properties

A data frame containing a column item_id (matching item_id’s already defined
in the project) and 1 or more other columns with item properties (e.g. item_type,
subject)

default_values a list where the names are item_properties and the values are defaults. The
defaults will be used wherever the item property is unknown.

Details

When entering response data in the form of a rectangular person x item table, it is easy to provide
person properties but practically impossible to provide item properties. This function provides a
possibility to do so.

Note that is is not possible to add new items with this function, use touch_rules if you want to
add new items to your project.

Value

nothing

See Also

fit_domains, profile_plot for possible uses of item_properties

Examples

Not run: \donttest{
db = start_new_project(verbAggrRules, "verbAggression.db")
head(verbAggrProperties)
add_item_properties(db, verbAggrProperties)
get_items(db)

close_project(db)
}
End(Not run)

add_person_properties Add person properties to a project

Description

Add, change or define person properties in a dexter project. Person properties defined here will also
be automatically imported with add_booklet

close_project 9

Usage

add_person_properties(db, person_properties = NULL, default_values = NULL)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

person_properties

A data frame containing a column person_id and 1 or more other columns with
person properties (e.g. education_type, birthdate)

default_values a list where the names are person_properties and the values are defaults. The
defaults will be used wherever the person property is unknown.

Details

Due to limitations in the sqlite database backend that we use, the default values for a person property
can only be defined once for each person_property

Value

nothing

close_project Close a project

Description

This is just an alias for DBI::dbDisconnect(db), included for completeness

Usage

close_project(db)

Arguments

db connection to a dexter database

10 coef.prms

coef.p2pass extract equating information

Description

extract equating information

Usage

S3 method for class 'p2pass'
coef(object, ...)

Arguments

object an p2pass object, generated by probability_to_pass

... further arguments are currently ignored

Value

A data.frame with columns:

booklet_id id of the target booklet

score_new score on the target booklet

probability_to_pass probability to pass on the reference test given score_new

true_positive proportion that correctly passes

sensitivity The proportion of positives that are correctly identified as such

specificity The proportion of negatives that are correctly identified as such

proportion proportion in sample with score_new

coef.prms extract enorm item parameters

Description

extract enorm item parameters

Usage

S3 method for class 'prms'
coef(object, hpd = 0.95, what = c("items", "var", "posterior"), ...)

design_info 11

Arguments

object an enorm parameters object, generated by the function fit_enorm

hpd width of Bayesian highest posterior density interval around mean_beta, value
must be between 0 and 1, default is 0.95

what which coefficients to return. Defaults to items (the item parameters). Can also
be var for the variance-covariance matrix (CML only) or posterior for all
draws of the item parameters (Bayes only)

... further arguments to coef are ignored

Details

The parametrisation of IRT models is far from uniform and depends on the author. Dexter uses the
following parametrisation for the extended Nominal Response Model (NRM):

P (X = aj |β, θ) =
exp

(
ajθ −

∑j
g=1 βg(ag − ag−1)

)
1 +

∑
h exp

(
ahθ −

∑h
g=1 βg(ag − ag−1)

)
where aj is a shorthand for the integer score belonging to the j-th category of an item.

For dichotomous items with a1 = 1 (i.e. the only possible scores are 0 and 1) this formula simplifies
to the standard Rasch model: P (x = 1|β, θ) = exp(θ−β)

1+exp(θ−β) . For polytomous items, when all scores
are equal to the categories (i.e. aj = j for all j) the NRM is equal to the Partial Credit Model,
although with a different parametrisation than is commonly used. For dichotomous items and for
all polytomous items where aj − aj−1 is constant, the formulation is equal to the OPLM.

Value

Depends on the calibration method and the value of ’what’. For what="items":

CML calibration a data.frame with columns: item_id, item_score, beta, SE_beta

Bayesian calibration a data.frame with columns: item_id, item_score, mean_beta, SD_beta, <hpd_b_left>,
<hpd_b_right>

If what="var" or what="posterior" then a matrix is returned with the variance-covariance matrix
or the posterior draws respectively.

design_info Information about the design

Description

This function is useful to inspect incomplete designs

Usage

design_info(dataSrc, predicate = NULL)

12 DIF

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

Value

a list with the following components

design a data.frame with columns booklet_id, item_id, item_position, n_persons

connected_booklets a data.frame with columns booklet_id, group; booklets with the same ‘group‘
are connected to each other.

connected TRUE/FALSE indicating whether the design is connected or not

testlets a data.frame with columns item_id and testlet; items within the same testlet always occur
together in a booklet

adj_matrix list of two adjacency matrices: *weighted_by_items* and *weighted_by_persons*;
These matrices can be useful in visually inspecting the design using a package like *igraph*

DIF Exploratory test for Differential Item Functioning

Description

Exploratory test for Differential Item Functioning

Usage

DIF(dataSrc, person_property, predicate = NULL)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score

person_property

Defines groups of persons to calculate DIF

predicate An optional expression to subset data, if NULL all data is used

Details

Tests for equality of relative item/category difficulties across groups. Supplements the confirmatory
approach of the profile plot.

distractor_plot 13

Value

An object of class DIF_stats holding statistics for overall-DIF and a matrix of statistics for DIF in
the relative position of item-category parameters in the beta-parameterization where they represent
locations on the ability scale where adjacent categories are equally likely. If there is DIF, the
function ‘plot‘ can be used to produce an image of the pairwise DIF statistics.

References

Bechger, T. M. and Maris, G (2015); A Statistical Test for Differential Item Pair Functioning.
Psychometrika. Vol. 80, no. 2, 317-340.

See Also

A plot of the result is produced by the function plot.DIF_stats

Examples

db = start_new_project(verbAggrRules, ":memory:", person_properties=list(gender='unknown'))
add_booklet(db, verbAggrData, "agg")
dd = DIF(db,person_property="gender")
print(dd)
plot(dd)
str(dd)

close_project(db)

distractor_plot Distractor plot

Description

Produce a diagnostic distractor plot for an item

Usage

distractor_plot(
dataSrc,
item_id,
predicate = NULL,
legend = TRUE,
curtains = 10,
adjust = 1,
col = NULL,
...

)

14 fit_domains

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, response, item_score and optionally booklet_id

item_id The ID of the item to plot. A separate plot will be produced for each booklet
that contains the item, or an error message if the item_id is not known. Each
plot contains a non-parametric regression of each possible response on the total
score.

predicate An optional expression to subset data, if NULL all data is used
legend logical, whether to include the legend. default is TRUE
curtains 100*the tail probability of the sum scores to be shaded. Default is 10. Set to 0

to have no curtains shown at all.
adjust factor to adjust the smoothing bandwidth respective to the default value
col vector of colors to use for plotting. The names of the vector can be responses. If

the vector is not named, colors are assigned to the most frequent responses first.
... further arguments to plot.

Details

Customization of title and subtitle can be done by using the arguments main and sub. These ar-
guments can contain references to the variables item_id, booklet_id, item_position(if available),
pvalue, rit and rir. References are made by prefixing these variables with a dollar sign. Variable
names may be postfixed with a sprintf style format string, e.g. distractor_plot(db, main='item:
$item_id', sub='Item rest correlation: $rir:.2f')

Value

Silently, a data.frame of response categories and colors used. Potentially useful if you want to
customize the legend or print it separately

fit_domains Estimate the Rasch and the Interaction model per domain

Description

Estimate the parameters of the Rasch model and the Interaction model

Usage

fit_domains(dataSrc, item_property, predicate = NULL)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score

item_property The item property defining the domains (subtests)
predicate An optional expression to subset data, if NULL all data is used

fit_enorm 15

Details

We have generalised the interaction model for items having more than two (potentially, a largish
number) of response categories. This function represents scores on subtests as super-items and
analyses these as normal items.

Value

An object of class imp holding results for the Rasch model and the interaction model.

See Also

plot.rim, fit_inter, add_item_properties

Examples

db = start_new_project(verbAggrRules, ":memory:")
add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)
mSit = fit_domains(db, item_property= "situation")
plot(mSit)

close_project(db)

fit_enorm Fit the extended nominal response model

Description

Fits an Extended NOminal Response Model (ENORM) using conditional maximum likelihood
(CML) or a Gibbs sampler for Bayesian estimation.

Usage

fit_enorm(
dataSrc,
predicate = NULL,
fixed_params = NULL,
method = c("CML", "Bayes"),
nDraws = 1000,
merge_within_persons = FALSE

)

16 fit_enorm

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

fixed_params Optionally, a prms object from a previous analysis or a data.frame with param-
eters, see details.

method If CML, the estimation method will be Conditional Maximum Likelihood; oth-
erwise, a Gibbs sampler will be used to produce a sample from the posterior

nDraws Number of Gibbs samples when estimation method is Bayes.

merge_within_persons

whether to merge different booklets administered to the same person, enabling
linking over persons as well as booklets.

Details

To support some flexibility in fixing parameters, fixed_params can be a dexter prms object or a
data.frame. If a data.frame, it should contain the columns item_id, item_score and a difficulty
parameter. Three types of parameters are supported:

delta/beta thresholds between subsequent item categories

eta item-category parameters

b exp(-eta)

Each type corresponds to a different parametrization of the model.

Value

An object of type prms. The prms object can be cast to a data.frame of item parameters using
function coef or used directly as input for other Dexter functions.

References

Maris, G., Bechger, T.M. and San-Martin, E. (2015) A Gibbs sampler for the (extended) marginal
Rasch model. Psychometrika. 80(4), 859-879.

Koops, J. and Bechger, T.M. and Maris, G. (in press); Bayesian inference for multistage and other
incomplete designs. In Research for Practical Issues and Solutions in Computerized Multistage
Testing. Routledge, London.

See Also

functions that accept a prms object as input: ability, plausible_values, plot.prms, and plausible_scores

fit_inter 17

fit_inter Estimate the Interaction and the Rasch model

Description

Estimate the parameters of the Interaction model and the Rasch model

Usage

fit_inter(dataSrc, predicate = NULL)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

Details

Unlike the Rasch model, the interaction model cannot be computed concurrently for a whole design
of test forms. This function therefore fits the Rasch model and the interaction model on complete
data. This typically consist of responses to items in one booklet but can also consist of the intersec-
tion (common items) in two or more booklets. If the intersection is empty (no common items for
all persons), the function will exit with an error message.

Value

An object of class rim holding results for the Rasch model and the interaction model.

See Also

plot.rim, fit_domains

Examples

db = start_new_project(verbAggrRules, ":memory:")
add_booklet(db, verbAggrData, "agg")

m = fit_inter(db, booklet_id=='agg')
plot(m, "S1DoScold", show.observed=TRUE)

close_project(db)

18 get_design

get_booklets Booklets entered in a project

Description

Retrieve information about the booklets entered in the db so far

Usage

get_booklets(db)

Arguments

db a connection to a dexter database, i.e. the output of start_new_project or
open_project

Value

A data frame with columns: booklet_id, n_persons, n_items and booklet_max_score. booklet_max_score
gives the maximum theoretically possible score according to the scoring rules

get_design Test design

Description

Retrieve all items that have been entered in the db so far by booklet and position in the booklet

Usage

get_design(
dataSrc,
format = c("long", "wide"),
rows = c("booklet_id", "item_id", "item_position"),
columns = c("item_id", "booklet_id", "item_position"),
fill = NA

)

Arguments

dataSrc a dexter database or any object form which a design can be inferred

format return format, see below

rows variable that defines the rows, ignored if format=’long’

columns variable that defines the columns, ignored if format=’long’

fill If set, missing values will be replaced with this value, ignored if format=’long’

get_items 19

Value

A data.frame with the design. The contents depend on the rows, columns and format parameters if
format is 'long' a data.frame with columns: booklet_id, item_id, item_position (if available) if
format is 'wide' a data.frame with the rows defined by the rows parameter and the columns by the
columns parameter, with the remaining variable (i.e. item_id, booklet_id or item_position) making
up the cells

get_items Items in a project

Description

Retrieve all items that have been entered in the db so far together with the item properties

Usage

get_items(db)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

Value

A data frame with column item_id and a column for each item property

get_persons Persons in a project

Description

Retrieve all persons/respondents that have been entered in the db so far together with their properties

Usage

get_persons(db)

Arguments

db a connection to a dexter database, e.g. the output of start_new_project or
open_project

Value

A data frame with columns person_id and columns for each person_property

20 get_responses

get_responses Selecting data

Description

Extract data from a dexter database

Usage

get_responses(
dataSrc,
predicate = NULL,
columns = c("person_id", "item_id", "item_score")

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate an expression to select data on

columns the columns you wish to select, can include any column in the project, see:
get_variables

Details

Many functions in Dexter accept a data source and a predicate. Predicates are extremely flexible
but they have a few limitations because they work on the individual response level. It is therefore
not possible for example, to remove complete person cases from an analysis based on responses to
a single item by using just a predicate expression.

For such cases, Dexter supports selecting the data and manipulating it before passing it back to a
Dexter function or possibly doing something else with it. The following example will hopefully
clarify this.

Value

a data.frame of responses

Examples

Not run:
goal: fit the extended nominal response model using only persons
without any missing responses
library(dplyr)

the following would not work since it will omit only the missing
responses, not the persons; which is not what we want in this case
wrong = fit_enorm(db, response != 'NA')

get_resp_data 21

to select on an aggregate level, we need to gather the data and
manipulate it ourselves
data = get_responses(db,

columns=c('person_id','item_id','item_score','response')) |>
group_by(person_id) |>
mutate(any_missing = any(response=='NA')) |>
filter(!any_missing)

correct = fit_enorm(data)

End(Not run)

get_resp_data Functions for developers

Description

These functions are meant for people who want to develop their own models based on the data
management structure of dexter. The benefit is some extra speed and less memory usage compared
to using get_responses or get_testscores. The return value of get_resp_data can be used as the
’dataSrc’ argument in analysis functions.

Usage

get_resp_data(
dataSrc,
qtpredicate = NULL,
extra_columns = NULL,
summarised = FALSE,
env = NULL,
protect_x = TRUE,
retain_person_id = TRUE,
merge_within_persons = FALSE,
parms_check = NULL,
raw = FALSE

)

get_resp_matrix(dataSrc, qtpredicate = NULL, env = NULL)

Arguments

dataSrc data.frame, integer matrix, dexter database or ‘dx_resp_data‘ object

qtpredicate quoted predicate, e.g. quote(booklet_id=='bk01')

extra_columns to be returned in addition to person_id, booklet_id, item_score, item_id

summarised if TRUE, no item scores are returned, just booklet scores

22 get_rules

env environment for evaluation of qtpredicate, defaults to caller environment

protect_x best set TRUE (default)
retain_person_id

whether to retain the original person_id levels or just use arbitrary integers
merge_within_persons

merge different booklets for the same person together

parms_check data.frame of item_id, item_score to check for coverage of data

raw if raw is TRUE, no sum scores, booklets, or design is provided and arguments,
’parms_check’ and ’summarised’ are ignored

Details

Regular users are advised not to use these functions as incorrect use can crash your R-session or
lead to unexpected results.

Value

get_resp_data returns a list with class ‘dx_resp_data‘ with elements

x when summarised is FALSE, a tibble(person_id, booklet_id, item_id, item_score, book-
let_score [, extra_columns]), sorted in such a way that all rows pertaining to the same
person-booklet are together
when summarised is TRUE, a tibble(person_id, booklet_id, booklet_score [, extra_columns])

design tibble(booklet_id, item_id), sorted

get_resp_matrix returns a matrix of item scores as commonly used in other IRT packages, facili-
tating easy connection of your own package to the data management capabilities of dexter

get_rules Get scoring rules

Description

Retrieve the scoring rules currently present in the dexter project db

Usage

get_rules(db)

Arguments

db a connection to a Dexter database

Value

data.frame of scoring rules containing columns: item_id, response, item_score

get_testscores 23

get_testscores Get test scores

Description

Supplies the sum of item scores for each person selected.

Usage

get_testscores(dataSrc, predicate = NULL)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to filter data, if NULL all data is used

Value

A tibble with columns person_id, item_id, booklet_score

get_variables Variables that are defined in the project

Description

Inspect the variables defined in your dexter project and their datatypes

Usage

get_variables(db)

Arguments

db a dexter project database

Details

The variables in Dexter consist of the item properties and person properties you specified and a
number of reserved variables that are automatically defined like response and booklet_id.

Variables in Dexter are most useful when used in predicate expressions. A number of functions can
take a dataSrc argument and an optional predicate. Predicates are a concise and flexible way to filter
data for the different psychometric functions in Dexter.

The variables can also be used to retrieve data in get_responses

24 individual_differences

Value

a data.frame with name and type of the variables defined in your dexter project

individual_differences

Test individual differences

Description

Test individual differences

Usage

individual_differences(dataSrc, predicate = NULL)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data are used.

Details

This function uses a score distribution to test whether there are individual differences in ability.
First, it estimates ability based on the score distribution. Then, the observed distribution is compared
to the one expected from the single estimated ability. The data are typically from one booklet but can
also consist of the intersection (i.e., the common items) of two or more booklets. If the intersection
is empty (i.e., no common items for all persons), the function will exit with an error message.

Value

An object of type tind. Printing the object will show test results. Plotting it will produce a plot
of expected and observed score frequencies. The former under the hypothesis that there are no
individual differences.

Examples

db = start_new_project(verbAggrRules, ":memory:")
add_booklet(db, verbAggrData, "agg")

dd = individual_differences(db)
print(dd)
plot(dd)

close_project(db)

information 25

information Functions of theta

Description

returns information function, expected score function, score simulation function, or score distribu-
tion for a single item, an arbitrary group of items or all items

Usage

information(
parms,
items = NULL,
booklet_id = NULL,
parms_draw = c("average", "sample")

)

expected_score(
parms,
items = NULL,
booklet_id = NULL,
parms_draw = c("average", "sample")

)

r_score(
parms,
items = NULL,
booklet_id = NULL,
parms_draw = c("average", "sample")

)

p_score(
parms,
items = NULL,
booklet_id = NULL,
parms_draw = c("average", "sample")

)

Arguments

parms object produced by fit_enorm or a data.frame with columns item_id, item_score
and, depending on parametrization, a column named either beta/delta, eta or b

items vector of one or more item_id’s. If NULL and booklet_id is also NULL, all
items in parms are used

booklet_id id of a single booklet (e.g. the test information function), if items is not NULL
this is ignored

26 information

parms_draw when the item parameters are estimated with method "Bayes" (see: fit_enorm),
parms_draw specifies whether to use a sample (a different item parameter draw
for each output column) or the posterior mean of the item draws. Alternatively,
it can be an integer specifying a specific draw. It is ignored when parms is not
estimated Bayesianly.

Value

Each function returns a new function which accepts a vector of theta’s. These return the following
values:

information an equal length vector with the information estimate at each value of theta.

expected_score an equal length vector with the expected score at each value of theta

r_score a matrix with length(theta) rows and one column for each item containing simulated scores
based on theta. To obtain test scores, use rowSums on this matrix

p_score a matrix with length(theta) rows and one column for each possible sumscore containing
the probability of the score given theta

Examples

db = start_new_project(verbAggrRules,':memory:')
add_booklet(db,verbAggrData, "agg")
p = fit_enorm(db)

plot information function for single item

ifun = information(p, "S1DoScold")

plot(ifun,from=-4,to=4)

compare test information function to the population ability distribution

ifun = information(p, booklet="agg")

pv = plausible_values(db,p)

op = par(no.readonly=TRUE)
par(mar = c(5,4,2,4))

plot(ifun,from=-4,to=4, xlab='theta', ylab='test information')

par(new=TRUE)

plot(density(pv$PV1), col='green', axes=FALSE, xlab=NA, ylab=NA, main=NA)
axis(side=4)
mtext(side = 4, line = 2.5, 'population density (green)')

par(op)
close_project(db)

keys_to_rules 27

keys_to_rules Derive scoring rules from keys

Description

For multiple choice items that will be scored as 0/1, derive the scoring rules from the keys to the
correct responses

Usage

keys_to_rules(keys, include_NA_rule = FALSE)

Arguments

keys A data frame containing columns item_id, noptions, and key See details.
include_NA_rule

whether to add an option ’NA’ (which is scored 0) to each item

Details

This function might be useful in setting up the scoring rules when all items are multiple-choice and
scored as 0/1.

The input data frame must contain the exact id of each item, the number of options, and the key. If
the keys are all integers, it will be assumed that responses are coded as 1 through noptions. If they
are all letters, it is assumed that responses are coded as A,B,C,... All other cases result in an error.

Value

A data frame that can be used as input to start_new_project

latent_cor Latent correlations

Description

Estimates correlations between latent traits using plausible values as described in Marsman, et al.
(2022). An item_property is used to distinguish the different scales.

28 latent_cor

Usage

latent_cor(
dataSrc,
item_property,
predicate = NULL,
nDraws = 500,
hpd = 0.95,
use = "complete.obs"

)

Arguments

dataSrc A connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score and the item_property

item_property The name of the item property used to define the domains. If dataSrc is a
dexter db then the item_property must match a known item property. If datasrc
is a data.frame, item_property must be equal to one of its column names.

predicate An optional expression to subset data, if NULL all data is used

nDraws Number of draws for plausible values

hpd width of Bayesian highest posterior density interval around the correlations,
value must be between 0 and 1.

use Only complete.obs at this time. Respondents who don’t have a score for one or
more scales are removed.

Details

This function uses plausible values so results may differ slightly between calls.

Value

List containing a estimated correlation matrix, the corresponding standard deviations, and the lower
and upper limits of the highest posterior density interval

References

Marsman, M., Bechger, T. M., & Maris, G. K. (2022). Composition algorithms for conditional dis-
tributions. In Essays on Contemporary Psychometrics (pp. 219-250). Cham: Springer International
Publishing.

open_project 29

open_project Open an existing project

Description

Opens a database created by function start_new_project

Usage

open_project(db_name = "dexter.db")

Arguments

db_name The name of the database to be opened.

Value

a database connection object

plausible_scores Draw plausible test scores

Description

Draw plausible, i.e. posterior predictive sumscores on a set of items.

Usage

plausible_scores(
dataSrc,
parms = NULL,
predicate = NULL,
items = NULL,
parms_draw = c("sample", "average"),
covariates = NULL,
nPS = 1,
prior_dist = c("normal", "mixture"),
keep.observed = TRUE,
by_item = FALSE,
merge_within_persons = FALSE

)

30 plausible_scores

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms An object returned by function fit_enorm and containing parameter estimates.
If parms is given the function provides plausible scores conditional on the item
parameters. These are considered known. If parms is NULL, Bayesian parameters
are calculated from the datasrc

predicate an expression to filter data. If missing, the function will use all data in dataSrc

items vector of item_id’s, this specifies the itemset to generate the testscores for. If
items is NULL all items occurring in dataSrc are used.

parms_draw when the item parameters are estimated Bayesianly (see: fit_enorm), parms_draw
specifies whether to use a sample(a different item parameter draw for each plau-
sible values draw) or the posterior mean of the item draws. Alternatively, it can
be an integer specifying a specific draw. Ignored when parms is not estimated
Bayesianly.

covariates name or a vector of names of the variables to group the population, used to
update the prior. A covariate must be a discrete person covariate that indicates
nominal categories, e.g. gender or school If dataSrc is a data.frame, it must
contain the covariate.

nPS Number of plausible testscores to generate per person.

prior_dist use a normal prior for the plausible values or a mixture of two normals. A
mixture is only possible when there are no covariates.

keep.observed If responses to one or more of the items have been observed, the user can choose
to keep these observations or generate new ones.

by_item return scores per item instead of sumscores

merge_within_persons

If a person took multiple booklets, this indicates whether plausible scores are
generated per person (TRUE) or per booklet (FALSE)

Details

A typical use of this function is to generate plausible scores on a complete item bank when data is
collected using an incomplete design

Value

A data.frame with columns booklet_id, person_id, booklet_score and nPS plausible scores named
PS1...PSn.

plausible_values 31

plausible_values Draw plausible values

Description

Draws plausible values based on test scores

Usage

plausible_values(
dataSrc,
parms = NULL,
predicate = NULL,
covariates = NULL,
nPV = 1,
parms_draw = c("sample", "average"),
prior_dist = c("normal", "mixture"),
merge_within_persons = FALSE

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms An object returned by function fit_enorm containing parameter estimates. If
parms are provided, item parameters are considered known. If parms = NULL,
they will be estimated Bayesianly.

predicate an expression to filter data. If missing, the function will use all data in dataSrc

covariates name or a vector of names of the variables to group the populations used to
improve the prior. A covariate must be a discrete person property (e.g. not a
float) that indicates nominal categories, e.g. gender or school. If dataSrc is a
data.frame, it must contain the covariate.

nPV Number of plausible values to draw per person.

parms_draw when the item parameters are estimated with method "Bayes" (see: fit_enorm),
parms_draw specifies whether to use a sample (a different item parameter draw
for each plausible values draw) or the posterior mean of the item draws. Alter-
natively, it can be an integer specifying a specific draw. It is ignored when parms
is not estimated Bayesianly.

prior_dist use a normal prior for the plausible values or a mixture of two normals. A
mixture is only possible when there are no covariates.

merge_within_persons

If a person took multiple booklets, this indicates whether plausible values are
generated per person (TRUE) or per booklet (FALSE)

32 plausible_values

Details

When the item parameters are estimated using fit_enorm(..., method='Bayes') and parms_draw
= ’sample’, the uncertainty of the item parameters estimates is taken into account when drawing
multiple plausible values.

In there are covariates, the prior distribution is a hierarchical normal with equal variances across
groups. When there is only one group this becomes a regular normal distribution. When there are no
covariates and prior_dist = "mixture", the prior is a mixture distribution of two normal distributions
which gives a little more flexibility than a normal prior.

Value

A data.frame with columns booklet_id, person_id, booklet_score, any covariate columns, and nPV
plausible values named PV1...PVn.

References

Marsman, M., Maris, G., Bechger, T. M., and Glas, C.A.C. (2016) What can we learn from plausible
values? Psychometrika. 2016; 81: 274-289. See also the vignette.

Examples

db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="<unknown>"))

add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)

f=fit_enorm(db)
pv_M=plausible_values(db,f,(mode=="Do")&(gender=="Male"))
pv_F=plausible_values(db,f,(mode=="Do")&(gender=="Female"))

par(mfrow=c(1,2))

plot(ecdf(pv_M$PV1),
main="Do: males versus females", xlab="Ability", col="red")

lines(ecdf(pv_F$PV1), col="green")
legend(-2.2,0.9, c("female", "male") ,

lty=1, col=c('green', 'red'), bty='n', cex=.75)

pv_M=plausible_values(db,f,(mode=="Want")&(gender=="Male"))
pv_F=plausible_values(db,f,(mode=="Want")&(gender=="Female"))

plot(ecdf(pv_M$PV1),
main="Want: males versus females", xlab=" Ability", col="red")

lines(ecdf(pv_F$PV1),col="green")
legend(-2.2,0.9, c("female", "male") ,

lty=1, col=c('green', 'red'), bty='n', cex=.75)

close_project(db)

plot.DIF_stats 33

plot.DIF_stats plot method for pairwise DIF statistics

Description

plot method for pairwise DIF statistics

Usage

S3 method for class 'DIF_stats'
plot(x, items = NULL, itemsX = items, itemsY = items, alpha = 0.05, ...)

Arguments

x object produced by DIF

items character vector of item id’s for a subset of the plot. Useful if you have many
items. If NULL all items are plotted.

itemsX character vector of item id’s for the X axis

itemsY character vector of item id’s for the Y axis

alpha significance level used to color the plot (two sided)

... further arguments to plot

Details

Plotting produces an image of the matrix of pairwise DIF statistics. The statistics are standard
normal deviates and colored to distinguish significant from non-significant values. If there is no
DIF, a proportion alpha off the cells will be colored significant by chance alone.

References

Feskens, R., Fox, J. P., & Zwitser, R. (2019). Differential item functioning in PISA due to mode
effects. In Theoretical and Practical Advances in Computer-based Educational Measurement (pp.
231-247). Springer, Cham.

34 plot.prms

plot.p2pass A plot method for probability_to_pass

Description

Plot equating information from probability_to_pass

Usage

S3 method for class 'p2pass'
plot(
x,
what = c("all", "equating", "sens/spec", "roc"),
booklet_id = NULL,
...

)

Arguments

x An object produced by function probability_to_pass

what information to plot, ’equating’, ’sens/spec’, ’roc, or ’all’
booklet_id vector of booklet_id’s to plot, if NULL all booklets are plotted
... Any additional plotting parameters; e.g., cex = 0.7.

plot.prms Plot for the extended nominal Response model

Description

The plot shows ’fit’ by comparing the expected score based on the model (grey line) with the average
scores based on the data (black line with dots) for groups of students with similar estimated ability.

Usage

S3 method for class 'prms'
plot(
x,
item_id = NULL,
dataSrc = NULL,
predicate = NULL,
nbins = 5,
ci = 0.95,
add = FALSE,
col = "black",
col.model = "grey80",
...

)

plot.rim 35

Arguments

x object produced by fit_enorm

item_id which item to plot, if NULL, one plot for each item is made

dataSrc data source, see details

predicate an expression to subset data in dataSrc

nbins number of ability groups

ci confidence interval for the error bars, between 0 and 1. Use 0 to suppress the
error bars. Default = 0.95 for a 95% confidence interval

add logical; if TRUE add to an already existing plot

col color for the observed score average

col.model color for the expected score based on the model

... further arguments to plot

Details

The standard plot shows the fit against the sample on which the parameters were fitted. If dataSrc
is provided, the fit is shown against the observed data in dataSrc. This may be useful for plotting
the fit in different subgroups as a visual test for item level DIF. The confidence intervals denote the
uncertainty about the predicted pvalues within the ability groups for the sample size in dataSrc (if
not NULL) or the original data on which the model was fit.

Value

Silently, a data.frame with observed and expected values possibly useful to create a numerical fit
measure.

plot.rim A plot method for the interaction model

Description

Plot the item-total regressions fit by the interaction (or Rasch) model

Usage

S3 method for class 'rim'
plot(
x,
items = NULL,
summate = TRUE,
overlay = FALSE,
curtains = 10,
show.observed = TRUE,
...

)

36 probability_to_pass

Arguments

x An object produced by function fit_inter

items The items to plot (item_id’s). If NULL, all items will be plotted

summate If FALSE, regressions for polytomous items will be shown for each response
option separately; default is TRUE.

overlay If TRUE and more than one item is specified, there will be two plots, one for the
Rasch model and the other for the interaction model, with all items overlayed;
otherwise, one plot for each item with the two models overlayed. Ignored if
summate is FALSE. Default is FALSE

curtains 100*the tail probability of the sum scores to be shaded. Default is 10. Set to 0
to have no curtains shown at all.

show.observed If TRUE, the observed proportion correct at each sum score will be shown as
dots. Default is FALSE.

... Any additional plotting parameters.

Details

Customization of title and subtitle can be done by using the arguments main and sub. These ar-
guments can contain references to the variables item_id (if overlay=FALSE) or model (if over-
lay=TRUE) by prefixing them with a dollar sign, e.g. plot(m, main=’item: $item_id’)

probability_to_pass The probability to pass on a reference test given a score on a new
booklet

Description

Given response data that form a connected design, compute the probability to pass on the reference
set conditional on each score on one or more target tests.

Usage

probability_to_pass(
dataSrc,
parms,
ref_items,
pass_fail,
predicate = NULL,
target_booklets = NULL,
nDraws = 1000

)

profile_plot 37

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

parms object produced by fit_enorm or a data.frame with columns item_id, item_score
and beta. If uncertainty about parameter estimation should be included in the
computations, use a ‘parms‘ object computed with ‘method=’Bayes’‘ and nDraws
equal or larger than nDraws in probability_to_pass

ref_items vector with id’s of items in the reference set, they must all occur in dataSrc

pass_fail pass-fail score on the reference set, the lowest score with which one passes

predicate An optional expression to subset data in dataSrc, if NULL all data is used

target_booklets

The target test booklet(s). A data.frame with columns booklet_id (if multiple
booklets) and item_id, if NULL (default) this will be derived from the dataSrc
and the probability to pass will be computed for each test score for each booklet
in your data.

nDraws The function uses an Markov-Chain Monte-Carlo method to calculate the prob-
ability to pass and this is the number of Monte-Carlo samples used.

Details

Note that this function is computationally intensive and can take some time to run, especially when
computing the probability to pass for multiple target booklets. Further technical details can be found
in a vignette.

Value

An object of type p2pass. Use coef() to extract the probablity to pass for each booklet and score.
Use plot() to plot the probabilities, sensitivity and specificity or a ROC-curve.

See Also

The function used to plot the results: plot.p2pass

profile_plot Profile plot

Description

Profile plot

38 profile_plot

Usage

profile_plot(
dataSrc,
item_property,
covariate,
predicate = NULL,
model = c("IM", "RM"),
x = NULL,
col = NULL,
col.diagonal = "lightgray",
...

)

Arguments

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score and the item_property and the covariate of interest.

item_property The name of the item property defining the domains. The item property should
have exactly two distinct values in your data

covariate name of the person property used to create the groups. There will be one line
for each distinct value.

predicate An optional expression to filter data, if NULL all data is used

model "IM" (default) or "RM" where "IM" is the interaction model and "RM" the Rasch
model. The interaction model is the default as it fits the data better or at least as
good as the Rasch model.

x Which category of the item_property to draw on the x axis, if NULL, one is
chosen automatically

col vector of colors to use for plotting

col.diagonal color of the diagonal lines representing the testscores

... further graphical arguments to plot. Graphical parameters for the legend can be
postfixed with .legend

Details

Profile plots can be used to investigate whether two (or more) groups of respondents attain the
same test score in the same way. The user must provide a (meaningful) classification of the items
in two non-overlapping subsets such that the test score is the sum of the scores on the subsets.
The plot shows the probabilities to obtain any combinations of subset scores with thin gray lines
indicating the combinations that give the same test score. The thick lines connect the most likely
combination for each test score in each group. When applied to educational test data, the plots can
be used to detect differences in the relative difficulty of (sets of) items for respondents that belong to
different groups and are matched on the test score. This provides a content-driven way to investigate
differential item functioning.

profile_tables 39

Examples

db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="unknown"))

add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)
profile_plot(db, item_property='mode', covariate='gender')

close_project(db)

profile_tables Profile analysis

Description

Expected and observed domain scores, conditional on the test score, per person or test score. Do-
mains are specified as categories of items using item_properties.

Usage

profile_tables(parms, domains, item_property, design = NULL)

profiles(
dataSrc,
parms,
item_property,
predicate = NULL,
merge_within_persons = FALSE

)

Arguments

parms An object returned by fit_enorm or a data.frame of item parameters

domains data.frame with column item_id and a column with name equal to item_property

item_property the name of the item property used to define the domains. If dataSrc is a dexter
db then the item_property must match a known item property. If datasrc is
a data.frame, item_property must be equal to one of its column names. For
profile_tables item_property must match a column name in domains.

design data.frame with columns item_id and optionally booklet_id

dataSrc a connection to a dexter database or a data.frame with columns: person_id,
item_id, item_score, an arbitrarily named column containing an item property
and optionally booklet_id

40 ratedData

predicate An optional expression to subset data in dataSrc, if NULL all data is used

merge_within_persons

whether to merge different booklets administered to the same person.

Details

When using a unidimensional IRT Model like the extended nominal response model in dexter (see:
fit_enorm), the model is as a rule to simple to catch all the relevant dimensions in a test. Never-
theless, a simple model is quite useful in practice. Profile analysis can complement the model in
this case by indicating how a test-taker, conditional on her/his test score, performs on a number of
pre-specified domains, e.g. in case of a mathematics test the domains could be numbers, algebra
and geometry or in case of a digital test the domains could be animated versus non-animated items.
This can be done by comparing the achieved score on a domain with the expected score, given the
test score.

Value

profiles a data.frame with columns person_id, booklet_id, booklet_score, <item_property>, do-
main_score, expected_domain_score

profile_tables a data.frame with columns booklet_id, booklet_score, <item_property>, expected_domain_score

References

Verhelst, N. D. (2012). Profile analysis: a closer look at the PISA 2000 reading data. Scandinavian
Journal of Educational Research, 56 (3), 315-332.

ratedData Rated data

Description

A data set with rated data. A number of student performances are rated twice on several aspects by
independent judges. The ratings are binary and have been summed following the theory discussed
by Maris and Bechger (2006, Handbook of Statistics). Data are a small subset of data collected on
the State Exam Dutch as a second language for Speaking.

Format

A data set with 75 rows and 15 columns.

ratedDataProperties 41

ratedDataProperties Item properties in the rated data

Description

A data set of item properties related to the rated data. These are the aspects: IH = content, WZ =
word choice and phrasing, and WK = vocabulary.

Format

A data set with 14 rows and 2 columns: item_id and aspect

ratedDataRules Scoring rules for the rated data

Description

A set of (trivial) scoring rules for the rated data set

Format

A data set with 42 rows and 3 columns (item_id, response, item_score).

read_oplm_par Read item parameters from oplm PAR or CML files

Description

Read item parameters from oplm PAR or CML files

Usage

read_oplm_par(par_path)

Arguments

par_path path to a file in the (binary) OPLM PAR format or the human readable CML
format

Details

It is very occasionally useful to calibrate new items on an existing scale. This function offers the
possibility to read parameters from the proprietary oplm format so that they can be used to fix a new
calibration in Dexter on an existing scale of items that were calibrated in oplm.

42 standards_3dc

Value

depends on the input. For .PAR files a data.frame with columns: item_id, item_score, beta, nbr, for
.CML files also several statistics columns that are outputted by OPLM as part of the calibration.

Examples

Not run:
\donttest{
par = read_oplm_par('/parameters.PAR')
f = fit_enorm(db, fixed_params=par)
}
End(Not run)

r_score_IM Simulation from the interaction model

Description

Simulate item scores conditional on test scores using the interaction model

Usage

r_score_IM(m, scores)

Arguments

m an object produced by function fit_inter

scores vector of test scores

Value

a matrix with item scores, one column per item and one row per test score. Row order equal to
scores

standards_3dc Standard setting

Description

Set performance standards on one or more test forms using the data driven direct consensus (3DC)
method

standards_3dc 43

Usage

standards_3dc(parms, design)

S3 method for class 'sts_par'
coef(object, ...)

S3 method for class 'sts_par'
plot(x, booklet_id = NULL, ...)

Arguments

parms parameters object returned from fit_enorm

design a data.frame with columns ‘cluster_id‘, ‘item_id‘ and optionally ‘booklet_id‘

object an object containing parameters for the 3DC standard setting procedure

... ignored Optionally you can include a column ‘booklet_id‘ to specify multiple
test forms for standard setting and/or columns ‘cluster_nbr‘ and ‘item_nbr‘ to
specify ordering of clusters and items in the forms and application.

x an object containing parameters for the 3DC standard setting procedure

booklet_id which test form to plot

Details

The data driven direct consensus (3DC) method of standard setting was invented by Gunter Maris
and described in Keuning et. al. (2017). To easily apply this procedure, we advise to use the free
digital 3DC application. This application can be downloaded from the Cito website, see the 3DC
application download page. If you want to apply the 3DC method using paper forms instead, you
can use the plot method to generate the forms from the sts_par object.

Although the 3DC method is used as explained in Keuning et. al., the method we use for comput-
ing the forms is a simple maximum likelihood scaling from an IRT model, described in Moe and
Verhelst (2017)

Value

an object of type ‘sts_par‘

References

Keuning J., Straat J.H., Feskens R.C.W. (2017) The Data-Driven Direct Consensus (3DC) Proce-
dure: A New Approach to Standard Setting. In: Blomeke S., Gustafsson JE. (eds) Standard Setting
in Education. Methodology of Educational Measurement and Assessment. Springer, Cham

Moe E., Verhelst N. (2017) Setting Standards for Multistage Tests of Norwegian for Adult Im-
migrants In: Blomeke S., Gustafsson JE. (eds) Standard Setting in Education. Methodology of
Educational Measurement and Assessment. Springer, Cham

See Also

how to make a database for the 3DC standard setting application: standards_db

https://www.cito.com/our-expertise/implementation/3dc
https://www.cito.com/our-expertise/implementation/3dc

44 standards_db

Examples

library(dplyr)
db = start_new_project(verbAggrRules, ":memory:")

add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)

design = get_items(db) |>
rename(cluster_id='behavior')

f = fit_enorm(db)

sts_par = standards_3dc(f, design)

plot(sts_par)

db_sts = standards_db(sts_par,'test.db',c('mildly aggressive','dangerously aggressive'))

standards_db Export a standard setting database for use by the free 3DC application

Description

This function creates an export (an sqlite database file) which can be used by the 3DC application.
This is a free application with which a standard setting session can be facilitated through a LAN
network using the Chrome browser. The 3DC application can be downloaded from 3DC application
download page

Usage

standards_db(
par.sts,
file_name,
standards,
population = NULL,
group_leader = "admin"

)

Arguments

par.sts an object containing parameters for the 3DC standard setting procedure pro-
duced by standards_3dc

https://www.cito.com/our-expertise/implementation/3dc
https://www.cito.com/our-expertise/implementation/3dc

start_new_project 45

file_name name of the exported database file

standards vector of 1 or more standards. In case there are multiple test forms and they
should use different performance standards, a list of such vectors. The names of
this list should correspond to the names of the testforms

population optional, a data.frame with three columns: ‘booklet_id‘,‘booklet_score‘,‘n‘ (where
n is a count)

group_leader login name of the group leader. The login password will always be ‘admin‘ but
can be changed in the 3DC application

start_new_project Start a new project

Description

Imports a complete set of scoring rules and starts a new project (database)

Usage

start_new_project(rules, db_name = "dexter.db", person_properties = NULL)

Arguments

rules A data frame with columns item_id, response, and item_score. The order is
not important but spelling is. Any other columns will be ignored.

db_name A string specifying a filename for a new sqlite database to be created. If this
name does not contain a path, the file will be created in the work directory. Any
existing file with the same name will be overwritten. For an in-memory database
you can use the string ":memory:". A connection object is also allowed.

person_properties

An optional list of person properties. Names should correspond to person_properties
intended to be used in the project. Values are used as default (missing) values.
The datatype will also be inferred from the values. Known person_properties
will be automatically imported when adding response data with add_booklet.

Details

This package only works with closed items (e.g. likert, MC or possibly short answer) it does not
score any open items. The first step to creating a project is to import an exhaustive list of all items
and all admissible responses, along with the score that any of the latter will be given. Responses
may be integers or strings but they will always be treated as strings. Scores must be integers, and
the minimum score for an item must be 0. When inputting data, all responses not specified in the
rules can optionally be treated as missing and ultimately scored 0, but it is good style to include the
missing responses in the list. NA values will be treated as the string "NA"’.

Value

a database connection object.

46 start_new_project_from_oplm

Examples

head(verbAggrRules)
db_name = tempfile(fileext='.db')
db = start_new_project(verbAggrRules, db_name,

person_properties = list(gender = "unknown"))

start_new_project_from_oplm

Start a new project from oplm files

Description

Creates a dexter project database and fills it with response data based on a .dat and .scr file

Usage

start_new_project_from_oplm(
dbname,
scr_path,
dat_path,
booklet_position = NULL,
responses_start = NULL,
response_length = 1,
person_id = NULL,
missing_character = c(" ", "9"),
use_discrim = FALSE,
format = "compressed"

)

Arguments

dbname filename/path of new dexter project database (will be overwritten if already ex-
ists)

scr_path path to the .scr file

dat_path path to the .dat file
booklet_position

vector of start and end of booklet position in the dat file, e.g. c(1,4), all positions
are counted from 1, start and end are both inclusive. If NULL, this is read from
the scr file.

responses_start

start position of responses in the .dat file. If NULL, this is read from the scr file.
response_length

length of individual responses, default=1

tia_tables 47

person_id optionally, a vector of start and end position of person_id in the .dat file. If
NULL, person id’s will be auto-generated.

missing_character

vector of character(s) used to indicate missing in .dat file, default is to use both
a space and a 9 as missing characters.

use_discrim if TRUE, the scores for the responses will be multiplied by the discrimination
parameters of the items

format not used, at the moment only the compressed format is supported.

Details

start_new_project_from_oplm builds a complete dexter database from a .dat and .scr file in the pro-
prietary oplm format. Four custom variables are added to the database: booklet_on_off, oplm_marginal,
item_local_on_off, item_global_on_off. These are taken from the .scr file and can be used in pred-
icates in the various dexter functions.

Booklet_position and responses_start are usually inferred from the scr file but since they are some-
times misspecified in the scr file they can be overridden. Response_length is not inferred from the
scr file since anything other than 1 is most often a mistake.

Value

a database connection object.

Examples

Not run: \donttest{
db = start_new_project_from_oplm('test.db',

'path_to_scr_file', 'path_to_dat_file',
booklet_position=c(1,3), responses_start=101,
person_id=c(50,62))

prms = fit_enorm(db,
item_global_on_off==1 & item_local_on_off==1 & booklet_on_off==1)

}
End(Not run)

tia_tables Simple test-item analysis

Description

Show simple Classical Test Analysis statistics at item and test level

48 touch_rules

Usage

tia_tables(
dataSrc,
predicate = NULL,
type = c("raw", "averaged", "compared"),
max_scores = c("observed", "theoretical"),
distractor = FALSE

)

Arguments

dataSrc a connection to a dexter database, a matrix, or a data.frame with columns: per-
son_id, item_id, item_score

predicate An optional expression to subset data, if NULL all data is used

type How to present the item level statistics: raw for each test booklet separately,
averaged booklets are ignored, with the exception of rit and rir which are aver-
aged over the test booklets, with the number of persons as weights, or compared,
in which case the pvalues, correlations with the sum score (rit), and correlations
with the rest score (rit) are shown in separate tables and compared across book-
lets

max_scores use the observed maximum item score or the theoretical maximum item score
according to the scoring rules in the database to determine pvalues and maxi-
mum scores

distractor add a tia for distractors, only useful for selected response (MC) items

Value

A list containing:

booklets a data.frame of statistics at booklet level

items a data.frame (or list if type=’compared’) of statistics at item level

distractors a data.frame of statistics at the response level (if distractor==TRUE), i.e. rvalue
(pvalue for response) and rar (rest-alternative correlation)

touch_rules Add or modify scoring rules

Description

It is occasionally necessary to alter or add a scoring rule, e.g. in case of a key error. This function
offers the possibility to do so and also allows you to add new items to your project

Usage

touch_rules(db, rules)

verbAggrData 49

Arguments

db a connection to a dexter project database

rules A data frame with columns item_id, response, and item_score. The order is
not important but spelling is. Any other columns will be ignored. See details

Details

The rules should contain all rules that you want to change or add. This means that in case of a key
error in a single multiple choice question, you typically have to change two rules.

Value

If the scoring rules pass a sanity check, a small summary of changes is printed and nothing is
returned. Otherwise this function returns a data frame listing the problems found, with 4 columns:

item_id id of the problematic item

less_than_two_scores if TRUE, the item has only one distinct score

duplicated_responses if TRUE, the item contains two or more identical response categories

min_score_not_zero if TRUE, the minimum score of the item was not 0

Examples

Not run: \donttest{
given that in your dexter project there is an mc item with id 'itm_01',
which currently has key 'A' but you want to change it to 'C'.

new_rules = data.frame(item_id='itm_01', response=c('A','C'), item_score=c(0,1))
touch_rules(db, new_rules)
}
End(Not run)

verbAggrData Verbal aggression data

Description

A data set of self-reported verbal behaviour in different frustrating situations (Vansteelandt, 2000).
The dataset also contains participants reported gender and scores on the ’anger’ questionnaire.

Format

A data set with 316 rows and 26 columns.

50 verbAggrRules

verbAggrProperties Item properties in the verbal aggression data

Description

A data set of item properties related to the verbal aggression data

Format

A data set with 24 rows and 5 columns.

verbAggrRules Scoring rules for the verbal aggression data

Description

A set of (trivial) scoring rules for the verbal aggression data set

Format

A data set with 72 rows and 3 columns (item_id, response, item_score).

Index

∗ datasets
ratedData, 40
ratedDataProperties, 41
ratedDataRules, 41
verbAggrData, 49
verbAggrProperties, 50
verbAggrRules, 50

ability, 4, 16
ability_tables (ability), 4
add_booklet, 6, 8, 45
add_item_properties, 7, 15
add_person_properties, 8
add_response_data (add_booklet), 6

close_project, 9
coef.p2pass, 10
coef.prms, 10
coef.sts_par (standards_3dc), 42

design_info, 11
dexter (dexter-package), 3
dexter-package, 3
DIF, 12, 33
distractor_plot, 13

expected_score (information), 25

fit_domains, 8, 14, 17
fit_enorm, 4, 11, 15, 25, 26, 30, 31, 37, 39, 40
fit_inter, 15, 17

get_booklets, 18
get_design, 18
get_items, 19
get_persons, 19
get_resp_data, 21
get_resp_matrix (get_resp_data), 21
get_responses, 20, 23
get_rules, 22
get_testscores, 23

get_variables, 20, 23

individual_differences, 24
information, 25

keys_to_rules, 27

latent_cor, 27

open_project, 29

p_score (information), 25
plausible_scores, 16, 29
plausible_values, 16, 31
plot.DIF_stats, 13, 33
plot.p2pass, 34, 37
plot.prms, 16, 34
plot.rim, 15, 17, 35
plot.sts_par (standards_3dc), 42
probability_to_pass, 10, 34, 36
profile_plot, 8, 37
profile_tables, 39
profiles (profile_tables), 39

r_score (information), 25
r_score_IM, 42
ratedData, 40
ratedDataProperties, 41
ratedDataRules, 41
read_oplm_par, 41

standards_3dc, 42, 44
standards_db, 43, 44
start_new_project, 45
start_new_project_from_oplm, 46

tia_tables, 47
touch_rules, 8, 48

verbAggrData, 49
verbAggrProperties, 50
verbAggrRules, 50

51

	dexter-package
	ability
	add_booklet
	add_item_properties
	add_person_properties
	close_project
	coef.p2pass
	coef.prms
	design_info
	DIF
	distractor_plot
	fit_domains
	fit_enorm
	fit_inter
	get_booklets
	get_design
	get_items
	get_persons
	get_responses
	get_resp_data
	get_rules
	get_testscores
	get_variables
	individual_differences
	information
	keys_to_rules
	latent_cor
	open_project
	plausible_scores
	plausible_values
	plot.DIF_stats
	plot.p2pass
	plot.prms
	plot.rim
	probability_to_pass
	profile_plot
	profile_tables
	ratedData
	ratedDataProperties
	ratedDataRules
	read_oplm_par
	r_score_IM
	standards_3dc
	standards_db
	start_new_project
	start_new_project_from_oplm
	tia_tables
	touch_rules
	verbAggrData
	verbAggrProperties
	verbAggrRules
	Index

